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MIXING OF MULTIPLE J_"rsWITH A CONFINED SUBSONIC CROSSFLOW

Summary ofNASA-SupportedExperimentsand Modeling

J_nes D. Holdmmm*

National Aeronautics and Space Administration
Lewis Research Center

Cievelmd, Ohio 44135

Abstract

Thispapersummarizesexperimenudand computational

re_Itsonthemixingofsingle,double,andopposedrowsof

jets with an isothermal or variable temperature nminsueam in
a confined subsonic crossflow. Xlm studies from which these

mealts came were performed to investigate flow _nd geomeCic

variations typical of the complex three-dimensional flowfield
in the dilution zone of combustion chambeEs in gas turbine

engines.

The principal observations from the experiments were that
the momentum-flux ratio was the most significant flow vari-

able, and that temperature disUibutions were similar, indepen-

dent of orifice diameter, when the orifice spacing And the

square-mot of the momentum-flux ratio were inversely pro-

lXXtiomL The experiments and empirical model for the mix-

ing of a single row of jets from round holes were extended to
include several variations typical of gas turbine combustors,

namely vmdable temperature mainstream, flow area conver-

gence, noncircular orifices, and double and opposed rows of

jets, both in-line and staggered. All except the last of these
were appropriately modeled with superposition or patches to

the basic empirical model. Combinations of flow and geometry

that gave optimum mixing were identified from the experi-
mental results.
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jetswithconterlinesin-line;see Appendix
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duct height at tnje_on plane.

jet-to-mainstream momentum-flux ratio (DR)(R) z

jet-to-mainstream mass-flux ratio (DR)(R)

Based on the results of c,alculations made with a three-
dimensional numerical model, the empirical model was fur-
ther extended to model the effects of curvature and

convergence. The principal conclusions from this study were

that the orifr, e spacing and momenRun-flux relationships were

the same as observed previously in a straight duct, but the jet
structure was significantly different for jets injected from the

inner wall of a turn than for those injected from the outer wall.

Also, curvature in the axial direction caused a drift of the jet

trajectories toward the inner wall, but the mixing in a turning
and converging channel did not seem to be inhibited by the

convergence, independent of whether the convergence was

or circumferential. The calculated jet penetration and

mixing in an annulus were similar to those in a rectangular
duct when the orifice spacing was specified at the radius

dividing the annulus into equal areas.
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mainstreamvelocity

jet velocity

•w/wm

wj/WT jet-to-mud mass flow ratio; equilibrium e

w /wm
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jet half-widths on injection(-) or opposite (+) side
of jet centedine;seeFig. 5

downstream coordinate; 0 at injection plane

cross-stream (radial) coordinate;0 atwall;y¢ at
locationof minimum temperaturein a line

X = constant, Z = constant

lateral (circumferential) coordinate; Oat eenterplane

0

0c

fr m - T)/('rm- Tj); (1)

temperaturedifferencerado at Yc

minimum temperaturedifference rado on injection
(-) or opposite(+) sideof jet centerllne;seeFig. 5

Inlroduction

The problem of jets-in-crossflow has been extensively
treated in the literature, to the point that it can almost be
considered a classical three-dimensional flow problem.
Although studies to date have all contributed additional
undexstandingof the general problem, the information obtained
in them was determined by their motivating application, and

may not satisfy the specific needs of different applications.

Considerations of mixing in gas turbine cumbustion cham-
bers have, during the past two decades, motivated several
studies on the mixing characteristics of jets injected normally
into a confined crosdlow. These are reportedin, e.g., Walker &
Kors (1973); Walker, Kors, & Holdeman (1973); Holdeman,
Walker, & Kors (1973); Kamotani & Greber (1973, 1974);
Walker & Eberhardt (1975); Holdeman, Walker, & Eberhardt
(1975); Cox (1975, 1976); Holdeman & Walker (1977); Bruce,

Mongia, & Reynolds (1979); Novick, Arvin, & Quinn (1980);
Novick & Troth (1981); Lipshitz & Greber (1981),
Riddlebaugh, Lipshitz, & Greber (1982); Khan, McGuixk, &
Whitelaw (1982); Atkinson, Khan, & Whitelaw (1982);

Srinivasan, Berenfeld, & Mongia (1982); Holdeman (1983);
Lipshkz & C-reber(1984); Holdeman, Srinivasan, & Berenfeld
(1984); Wiuig, F..lhahar,& Noll (1984); Srinivasan, Coleman,
& Johnson (1984); Holdeman & Srinivasan (1984); Fenell,
Almjalia, Busmnia, & Lilley (1984); Fenell, Aoki, & Lllky
(1985); Ferrell & Lilley (1985a,b); Srinivasan, Meyers,
Colemaa, & White (1985); Srinivama & White (1986);

Hokreman& MeMumy& Uney (19s6y,
Ong & Lilley (1986); Lilley (1986); Ong, McMtmay, & Lilley
0986);  enay, & Lmey(1987);teym & White
(1987); Soldemn, Reynolds, & White (1987); Srinivasan &
White (1988); Holdeman, Srinivasan, & White (1988); Vranos
& _ (1988_, Sufit,nm, Breton, Seal, Mzqgm, & Mutthy
(1989); N'dtjcx_, Karki, & Mongla (1990); Dwenger (1990);

& Stevens (1990); Stevens & Canotte (1990=,b);
Rlchards& Samuelsen(X990=,b,c);Smith(1990); Talpantimr
& Smith (1991); Holdeman, Reynolds, Sdnivasan, & White
(1991), Talpallikar, Smith, Lid, & Holdeman (1991), Vranos

& Liscinsky (1991); Vranos, Liscinsky, True, & Hoideman
0991) andSmith,Tstt mikar,& Holdeman(199D.

One facux making the combustor dilution zone jet-in-
cmssflow application unique is that it is a confined mixing
problem, with from 10 to 50 percent of the total flow entering
through the dilution jets. The resdt is that the equilibri=n
temperatme of the exiting flow may differ significantly from
that of the entering mainstream flow. To control or tailor the

combnstor exit temperatwe pattern it is necessary to be able
to characterize the exit distribution in terms of the upskeam
flow and geometric variables. This requires that the entire
flowfield be either known or modeled.

Description of the Flowfield

Figure I shows a schematic of the flow in a rectangular
duct with injection from a row of jets on the top wall. The
temperature field results are often presented as plots of the
temperature difference ratio, O, where

O= (Tin "T)

(Tm - Tj) (l)

A sequence of three-dimensional oblique views of this
parameter at several locations downstream of the injection
plane is shown in Fig. 2. In these plots the temperature
distribution is shown (on the abscissa) in y-z planes normal
to the main flow direction, x. Theooordinates y andz are,
respectively, parallel to the orifice centerlines and the row of
orifices. Note that the jet fluid is identified by larger values of

0 (i.e.,0 =1 if T-Tj, and0-0if T-TIn). The equilib-
rium 0 for any configuration is equal to the fraction of the

total flow entering through the dilution jets, w._/W.TBecause
the objective in this application was to identify dilution zone

configurations to provide a desired mixing pattern within a
given com_ length, the downslream stations of interest
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weredefmedin intervals of the duct height at the injection

location, Ho, rather than the orifice diameter, D.

The orifice configurations discussed herein are shown in
Fig. 3. The primary independent geometric variables for each
of these are the spacing between adjacent orifices, S, the
ogifice diameter, D (for noncircular orifices, llds is taken as

the diameter of a circle of equal area), and, fog double rows,
the axial spacingbetween rows, Sx. These areexpressed in
dimemdomless form as the ratio of the orifice q_acing to duct

height, SM0, the ratio of the duct height to orifice diameter,
H0/D, and the ratio of the axial spacing to the duct height,
S,/H_

The basic geometry fog the turning and converging ducts in
the numerical and empirical studies reported by Holdeman,
Srtnivasan, Reynolds, & White (1991) is shown in Fig. 4(a).
The duct convergence was identified by the ratio of the exit
eross-sectional area to that at the jet injection location. The
curved sections in the x-r plane were generated using circu-
lar arcs, and the curvature parameter was specified as the
inner radius of curvature of the duct normalized by the inlet

duct height, .Rcl/H0. The radius of curvaaue of the inner duct
wall in the r-z plane is given nondimensionally by its ratio to

the inlet duct height, RtfrI0.

Curved and converging ducts are defined by values of Rci

and Rt between zero and infmity (see Ha. 4(a)). Some
limiting cases of interest are as follows: a rectangular channel

is defined if Rt and Rci are infinite; a can results if Rei is
infudteand Rt - 0; and an annular ductresults if Rc/ is infinite
and 0 < Rt < infinity. A grid typical of those used in the
numerical turning duct calculations is shown in Fig. 4(b).

The primary independent flow variables were the jet-to-
mainstream density and momentum-flux ratios. Note that the
latter is equal to the ratio of jet-to-maiusueam dynamic pres-
sures, and the former is equal to the ratio of mal_-to-jet
temperatur_ if the jet static pressure is equal to that of the
mainslream. Table 1 gives the ranges investigated for both

the flow and geometric variables. Not all combinations of the
independent variables in the table were tested or analyzed;
only those combinations within the range given for the derived
variables represent conditions that are within the range of the
experiments and calculations performed.

Chronology of Previous Studies of Confined Mixing
in a Rectansular Duct

From the data of Walker & Kors (1973) for mixing of a row
of multiple jets in a slraight duct, an empirical model was
developed (Walker & Eberhardt, 1974; Holdeman & Walker,
1977) to calculate the temperature field downsCeam of a row
of jets injected into a confmed crossflow. A microcomputer
program based on this empirical model was used by Holdeman

(1983) to illustrate the effects of separately varying the inde-

pendent flow and geome_c variables and to identify the
relationships among them which characterized the mixing.

(Although it is recognized that a uniform temperature distri-
bution may not always be desired, optimum is used herein (as
in e.g., Holdeman & Walker, 1977; and Hokieman, Sdnlvaum,
& Bew.afeld, 1984)m identify flow and_ conditio._
_dch lead t_ a unlfmm temperaturedlstdlmt_ in a mini-
mum downstwaundistance.)

The results of these investigations of the mixing or a single
row of circular jets in a smdght duct may be smnmarized as
fonows: (1) mixing imp_ovodwid_ _
distance; (2) the momentum-flux ratio was fonnd to be the
most significant flow variable; (3) the effect of density ratio
appeared to be small at constant momentum-flux ratio;
(4) decreasingorificespacingata givenmomentum-flux ratio
reduced penetration but increased lateral uniformity;
(5) increasing orifice diame_ at a constantratio of splicing-

to-diameter (S/D) increased_ pene_tion O/N)), but ago
decreased lateraluniformity; (6) increasing orifice diameter at

a constantorifice Sl_Cing(S/Ho) increasedthe magnitude (_
the temperature difference, but jet penetration and profile
shape remained _ (7) lavfiles for conditions with the

momentum-flux ratio (J) and orifice spacing (S/Ho) inversely
coupled showed similar distributions over a range of
momentum-flux ratios; (8) smal]e_momentum-flux ratios (and/

or larger orifice spicing) requireda ipeater downmeam dis-
tance fogequivalent mixing. Note from the last two items that
optimum mixing was obtained fog any given orifice area when
the orifice spacing and momentum-flux were coupled, but
that a greater downstream distance was required fog equiva-
lent mixing when either the momentum-flux ratio was small
or the orifice spacing was large.

The studies by Srinivasan, Berenfeld, & Mongia (1982),
Srinivasan, Coleman, & Johnson (1984), and Srinivasan,

Meyers, Coleman, & White (1985) were performed to extend
the available experimental data and emplrical correlations eQ
the thermal mixing of multiple jets in crossflow to include
geometricand flow variations characteristic of gas turbine
combustion chambers, namely variable temperature main-
stream, flow area convergence, noncircular orifices, double
rows of holes, and opposed rows of jets, both in-line and
staggered. These experiments were an extension of those by
Walker & Kors (1973).

The principal conclusions from the second tier of experi-

ments reported in Holdeman, Srinivasan, & Berenfeld (1984)
and Holdeman, Sdnivasan, Coleman, Meyers, & White (1987)
were: (1) the inverse relationship between the momenUun-
flux ratio and the orifice spacing was confirmed and quanti-
fied; (2) at constant momentum-flux ratio, variations in density

ratio had only a second-order effect on the profdes; (3) flow
area convergence, especially injection wall convergence,
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significantly improved the mixing; (4) for odfr.es that wc_e
symmetric with respect tothe main flow direction, the effects
of shape were significant only within the first few jet diameters
downstream from the injection plane; (5) penetration of slots
slanted with respect to the main flow direction was less than
for circular holes or slots aligned with, or perpendicular to,

the main flow; (6) temperaturedistributions downstream from
slantedslotswesem_ted andshiftedhterpllywithrespectto

the injection centerplane; (7)jet penetration from two-
dimensional (mntin_) slots was _ to that downstream

from closely-spaced circular holes, except that temperatures
in the wake behind the jet was signifieandy higher for con-
tinuous slots; (8) a first-order approximation to the mixing of
jets with a variable temperature mainstream was achieved by
superimposing the upstream and jets-in-an-isothermal-
mainstream Wofiles; (9) at the same momentmn-flux ratio,

and with thesame orifice spacing (S/He), double rows of in-line
jets had temperature distributions similar to those from a
single row of circular holes of equal _ at the same spacing;
(10) jets from double rows of orifices of different size Jnd
spacing, or from double rows with orifices staggered, may be
approximated by superimposing independent calculations of
the two rows, but caution should be exercised using this
model for very small offsets between the rows; (11) for cppesed
rows of.jets, with the orifice centerlines in-line, the optimum
ratio of orifice spacing to duct height is me-half of the opti-
mum value for single-side injection at the same momentum-

ratio; (12) for opposed rows of jets, with the orifice
centerlines staggered, the optimum ratio of orifice spacing to
duct height is double the optimum value for single-side injec-
tion at the same momentum-flux ratio.

In the studies by Srinivasan, Berenfeld, & Mongia (1982),
Srinivasan, Coleman, & Johnson (1984), and Srinivasan,

Meyers, Coleman, & White (1985) the empirical model
reported by Holdeman & Walker (1977) was extended
Ololdeman & Srinivasan, 19861); Holdeman, Srinivasan,
Coleman, Meyers, & White, 1987) to model the effects of a
variable temperature mainstream, fow area convergence,
noucircular orifices, and double rows of jets, both axially
staged and cpposecL

Empirical correlation of experimental datawere shown
(e.g., Holdeman & Sfinivasan, 1986a) toprovide a good pre-
dictive capability within the parameter range of the generat-
ing experiments, but empirical models must be used with
caution, or not at all, outside that range. Physical modeling,
in various levels of sophistication and complexity, may be
used to obviate this weakness. In this regard, several oneand

two dimensional integral and differential jet-in-crossflow
models have been developed (e.g., NASA, 1969; Karagozian,
1986) and shown to give, for example, trajectory predictions
that are in good agreement with experiments. These models

may provide insight into the dominant physical mechanism(s),
and predict some of the characteristic parameters well, but

they rarely provide enough information to completely describe
the flowfield.

Althoughthe experimen_ results reported by Lipshitz&
Greber (1981), Riddlebangh, Lipshie,, & Greb_ (1982),
Lipshitz & _ (1984) and Zizehnan (1985) have provided
considerable insight into the flowfield in the annular 180°
cm_d duct_ mmm_ theaxltof6e omnlms¢_ iodm inlet

of the first stage tud>ine in gas turbine engines ruing revegse-

now,_stor metkumtiem, e_-ywm mt _e
enough to define the flow in all three coordinate directions as
would be needed to exu_l the empirical model.

Holdeman, Reynolds, & White (1987) stmmm'ized re0.flts

the computations by iteynotds & White (1987) who
used a _rce-dimenslmal, mdmlmt, viscom-flow computer
code to investigate the effects of curvature and ccnverlpmce
on the mixing of single and opposed rows of dilution jets.
Based on these results (Reynolds & White, 1987), the empiri-

model repemd by tto]deman, sztaivw_ cokman, &
White (1987) for the temperature field downstream of single
and multiple rows of jets injected into a straight duct was
extended to model the effects of both axial and cigumfeeential

curvaturewith and without conveage.n_ (Srinivasan & White,
1988).

This extension of the empirical model added the capability
to investigate the effects of curvature while retaining all the _
capabilities and limitations of the eat-fief versions. Also,

because the empirical model calculations (for dilulion jet
mixing in straight ducts) shown by Holdoman & Srinivasan
(1986a) were in generally better quantitative agreement with
thedata than three-dimensioual numerical model calculations,

the empirical model wns extended to model the tnmds, but not
the quantitative results, from the numerical calculations.

Flowfield Models

Empificol

The empirical model for the temperature field downstream

of jets mixing with a confined _w is based on the
observation that, for most cases of interest, vertical tempera-
ture profdes everywhere in the flowfield could be expressed
in thefollowing self-similar form (Holdeman & Walker, 1977):

:
(oo-

(2)



where 0 is the temperature difference ratio at vertical loca-
a± W± scaling parameters as

tion y, and vmin, _, 0 ¢, and Yc are
shown in Fig. 5.

Note thatFig. 5 shows injection from the.top (y/Ho = O)

toward an opposite wall (YMo = l) at the bottom. 0¢ isthe
maximum temperature diff_ ratio in the vertical p_file,

and y¢ Is itslocation. Theline defined by the locns of y¢ as
a functioa of downsueam distance, x, for z = Ois the d_mal

trajectory (contedine). Because the flow is confined, and the
vertical profiles are not symmetric about the centerline, the

minimumtemperaturedifference (eL) m not zero,
aud they and the hslf-widths (W_) are different for the
injection (-) side (y < Yc) and the opposite (+) side (y > yJ of
thejet. Note also that Fig. 5 and Eq. (2) are the same whether
the jets are hotter or cool_ than the mainslzemn, but that

T_iin > Tc & T when the jets are cooler.

Coaelations have been developed for each of these in temis

of the independent variables J, S/D, H0/D, z/S, and x/H0,

plus RciH0 and Rt/H0 for curved ducts and aspect ratio for
noncircular orifices. These are given in the Appendix.

Numerical

The numerical code used by Reynolds & White (1987) was
based on the USARTL three-dimensional model (Bruce,

Mongia, & Reynolds, 1979), and used pressure and velocities
as the main hydrodynamic variables. This code, or others
with similar capabilities, have been used in previous valida-
tion and assessment studies reported by Srinivasan, Reynolds,

Berry, Ball, Johnson, & Mongia (1983), Kenworthy, Correa,
& Burrus (1983), Sturgess (1983), Mongia, Reynolds, &
Srinivasan (1986), and Holdeman, Mongia, & Mularz (1988).

In the numerical model used in the studies by Srinivasan,

Reynolds, Berry, Ball, Johnson, & Mongia (1983) and
Reynolds & White (1987), the governing equations were rep-
resented by finite difference approximations on a staggered

grid system. Hybrid differencing was used for convective
terms with central differencing of all other terms. The velocity-

pressure coupling used the SIMPLER algorithm (Patankar,
1980). Uniform velocities, and mass flow rates were speci-
fied at all in-flow boundaries. Standard values of the con-

stants CD, C1, and C2 were used (i.e., CD = 0.09, C_ - 1.44,
C2 - 1.92). The RMS turbulence intensity was chosen to be
7.5 percent of the local mean velocity, the inlet length scale
was 2 percent of the jet diameter and the duct height for the jet
and mainstream respectively, and the turbulent Prandtl Num-
ber was 0.9 for all calculations.

Re_ult,s and Discussion

The following paragraphs describe the experimental results

and compare them with empirical and numerical model

calculations, in the context of the effects of the primary inde-

pendent variables. The flow and geometry conditkms corre-
sponding to the figures shown are given in Table 1. Complete
flow and gemztry conditions for the cases discussed are
given in Tables 2 and3 fortheexperimentaland numerical
studiesrespectively.Thecasenumbersshowncomspondto
those in Ixeviom mpom u noted.

Singe Row of Orifices

Variations with orifice size and spacing.--At constant ori-

rice area, Changes in orifr_ size and spacing can have a
significantinflueace on the 6 dimilmeons. This isdxnvuby
the experimental profiles in Fig. 6 where jets from closely

spaced small odfr.es undet-peaeuate and remain near the
injection wall (lxrt a), and jets from widely spaced larger
orifices over-penetrate and impinge ou the opposite wall
(pan b). In this figure, a duct cross-section is shown to the
left of the data. Note that both of these configurations have
the same ratio of orifice area to mainstream cross-sectional

area

The data for these conditions at zfrI 0" 0.5 are compared
with calculated distributions in Fig. 7. The empirical model
reproduces the data very well in the small orifice case, since
the data are consisumt with the major assumption in the
empirical model that all vertical temperature distributions can
be reduced to similar Oanssian profiles. The empirical model
does not do as well in the larger orifice case however, as the
impingement of the jets on the opposite wall results in vertical
profiles which are not similar.

The nuaua'ical model calculations made with approximately

20 000 nodes, although in qualitative agreement with the data,
show temperature gradients that are too steep, especially in
the uansverse direction. Under-prediction of the mixing was

seen in the single-jet calculations by Clans (1983) also, where
it was shown that the k-e type of turbulence model under-

estimated the intensity. The re.suitin Fig. 7 is typical of the
numerical model calculations shown in this paper.

For the sanall-orifice case a coarse-grid calculation using
less than 6000 nodes was also performed. The numerical
results in Fig. 7 illustrate the significant influence grid selec-
tion can have on the solution obtained, and the smearing of

the profiles which can occur because of numerical diffusion.
Even the fmer grid calculations by Srinivasan, Reynolds,
Ball, Berry, & Johnson (1983) and Reynolds & White (1987)
were not claimed to be grid independent; in fact, latex calcu-
lations by Claus & Vanka (1990) that used over 2.4 million
nodes for a single jet-in-erossflow did not appear to be grid

independent. (Although the calculated coarse-grid profiles
in Fig. 7 are in better quantitative agreement with the
experimental data than the freer-grid solution, this result
should be considered fortuitous.) In general, the finest



affordablegridshouldbeusedunlessgridindependencecan
bedemonstrated.

Couvled spacing and momentum-flux ratio.--It was
observed by Holdeman, Walker, & Kors (1973) that similar
jet penetration was obtained over a range of momentum-flux
ratios, independent of ofifw_ diameter, when the odfi_ spac-
ing and the square-root of the momenuan-flux ratio were
inversely _. ThisisapparentintheexperimenUd

datashown inF_g.8 from theexperimentsby Srinivaum,

Berenfeld, & Mongia (1982) (see also Holdeman & Walker,
1977; Holdeman, 1983; Hoideman, Sriuivasan, & Bexenfeld,

1984). For example, low momentum-flux ratios require large,
widely spaced holes, whereas smaller closely spaced holes are

for high momenann-flux ratios, as shown in Fig. 8.
The duct cross-section is shown to the right of the three-
dimensional oblique and isotherm contour plots for each
configuration. Note that thejet penetration and the centerplane
profiles are similarfor all cases,but that the circumferential
nonuniformity increases as the spacing increases. It follows
that for low momentum-flux ratios (large spacing) a greater
axial distance is required for equivalent mixing. (The
experimental results in Sriuivasan, Berenfeld, & Mongia (1982)
suggest that circumferential nonuniformities (as in Fig. 8(a))
mix much more rapidly with inc_g downstream distance
than do radial nonuniformities (such as shown in Fig. 6(a)).

Generally, jet penetration and centerplane profiles are simi-
lar when the orifice spacing and the square root of the
momemum-flux ratio are inversely proportional, i.e.,:

C ffi(S/H0)_Y (3)

For single-side injection, the centerplane profiles are
approximately centered across the duct height and approach
an isothermal distribution in the minimum downstream dis-

tance when C = 2.5. This appears to be independent of

orifice diameter, as shown in b_th the calculated and experi-
mental profiles in Fig. 9. Values of C in Eq. (3) which are

a factor of two or more smaller or larger than the optimum
_d to under-penetratiou or over-penetration respec-
tively (see Figs. 6 and 7 and Table 1). A summary of the
ggtctng and momentum-flux ratio relationships for single-
side injoction is given in Table 4.

Flow area convergence.--The effect of flow area conver-

gence on the temperatureWof'fles for S/H 0 = 0.5 and H0/D - 4
with J - 26 is shown in Fig. I0. The profiles in Fig. 10(a) are
from the straight duct, whereas those in Figs. 10(b) and (c) are

for test sections that converge symmetrically and asymmetri-
cally, respectively, to one-half of the injection plane height,

H0, in a downstream distance _ to H0 (i.e., dH/dx = 0.5).
Note that the ordinate in these figures is nondimensionalized

by the local height of the duct, so the gradients are less steep
than they would be in physical space.

At all downstream locations, the profiles for symmetric
convergence (Fig. 10(b)) are more uniform than the cone-
spoudlng straight duct Wofiles. An evm greater effect was
observed when all of the turning was on the injection walL
These profiles (Fig. 10(c)) are much mete unifmm in both the
uansvme and ]atend directions. Although detalkd analysis
_ not mdmakm, Hoidmm_ $dntmm_ md Betcafeld
(1984) hylx_l_bed that _ mixing in _verging
xaiom omld result from the mew.hl_ ot the straq dual-
vortex field typ/cal of • jet-in-cnmflow (c.f. _o Stevens &
Carrotte, 1988).

Sqm_ ho_s.--A_e testwm pe_med byS_dvmn,
Coleman, & Johnson(1984) with the couventional circular

holes replaced with square holes to identify the effect of this
change in ¢rifiee shape ee the mixing. Sqea_ ed_:es were
chosen to represent the approximation often made in multi-
dimensional numerical modeling due to limitations ou the
nmnber of grid nodes available. Figure 11 _ three-
dimensional obfique plots of the temperature distribution for

equal-area sqnare andmund holes with SMo" I and H0/D = 4
at intermediate momentum-flux ratios (slightly less than 25).
The mean temperature distributions are nearly identical at all
downstream locations.

Slots and holes.--Figure 12 shows three-dimensional i
obfiqne O disuibutions for equally spaced equiva_nt-_

streamlined, bluff, and slanted slots with S/Ho = 0.5 and Hot
D = 4. These slots had an aspect ratio (length/width) of 2.8,
with their major axes aligned with, perpendkular to, and

slanted at 45° to the mainstream flow direction. All profiles
comparison shown in this figure are for intermediate
momentum-flux ratios.

The streamlined slots (Fig.12(a)) have deeper jet penetra-
tion compared to the equal-area circular holes shown in Fig. 2.

Figure 12(b) shows that, for x/H0 < l,jets from bluffslots are
more two-dimensional across the orifice centerplane, and their
penetration is slightly less than for streamlined slots or round
holes. Farther downslream, both of the slot configurations,
and the circular holes give very similar mixed temperature
distributions.

Figure 12(c) shows the temperature distribution that results
when the same slot is slanted at 45° to the mainflow direction.

The three-dimensioual figures suggest that the asymmetry of
the orifices with respect to the main flow directicm promotes
the development of one vortex of the pair, but _ the

other. The penetration of the jets is noticeably _ for
this case, and the mixing does not appear to be any better.
Thus, there does not seem to be any advantage to this ceafigu-
ration in a rectangular duct, at least at the optimum orifice
spacing and momentum-flux ratio relationship for round
holes.
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Further insight into the mixing in this case is provided by the
isotherm contours in Fig. 13(a) for circular holes and in

Fig. 130>) for the 45° slanted slots. Note that at the closest
location (x/H0 = 0.25) the isotherms for the flow from the
slanted slots are inclined compared to those for jets from

circular holes. The influence of the adjacent image vorticies
in this flow would be to laterally shift the jet ceaterplanes
with increasing down.qream distance, as can be observed in
both Figs. 12(c) and 130>). Comparing the contours at

XlH0 = 0.5 to those at x/H0 = 0.25 suggeststhat the distribu-
tion has rotated farther as well as shifted. This also supports
the observation made from the oblique plots that the vorticies

_ to be of unequal suength.

Figure 14 shows experimental and calculated
three-dimensional oblique 0 distributions for slanted slots at
intermediate momentum-flux ratios. The empirical model
calculations include a modification to account for the observed

centerplane shift, butdo not model the asymmetry (Holdeman,
Srinivasan, Coleman, Meyers, & White, 1987). In contrast to
this, both the mmslation and rotation of the mixing pattern are
apparent in the numerical calculations, although the gradients
in these appear to be too steep as are those in almost all of the
numerical calculations shown herein.

In thesame study,a limitednumber of testswereper-
formedwithtwo-dimensionalslotsinplaceof therow of

discreet orifices. Figures 15(a) and 16(a) show.the results for,

respectively, a wide continuous slot (Aj/Am = 0.I) at a low
momentum-flux ratio (J - 6.7) and a narrow continuous slot

(Aj/A m = 0.05) at a high momentura-flux ratio (J = 105.4).
Distributions for closely spaced (S/D ,- 2) circl_lar holes are
shown in Figs. 150>) and 160>), and centerplane profdcs for
the circular and continuous slot jets are shown in Figs. 15(c)
and 16(c). The similarity in the penetration shown by these
profiles is surprising, since the two-dimensional slot flow
completely blocks the maintoP, whereas the discreet jet flow

is highly three-dimensional. In the latter case the mainslream
flow is deflected around, as well as over, the jets, creating the
well known vortexpairand kidney shaped mixing pattern.
The increased blockage in the slot-jet cases result in less
mixing and higher temperatures in the wake region of these
flows compared to equal-area closely-spaced holes.

Experimental profiles for the narrow slot at intermediate
momentum-flux ratios are similar to those shown in Fig. 15(a)
for the wide slot at a low momentum-flux ratio, and profiles
for the wide slot at an intermediate momentum-flux ratio are

similar to those shown in Fig. 16(a) for the narrow slot at a
high momentum-flux ratio (Srinivasan, Coleman, & Johnson,

1984). The corresponding circular hole cases are also similar,

as expected since thecorresponding values of C = (S/H0) (_)
are also similar.

Densiw mtio.--It was suggested by Holdeman, Walker, &
Kors (1973) that the density ratio did not need to be consid-
ered independently from the momentum-flux ratio. This was
confirmed over a broader range of density ratios in the exp,-
meritsby Srinivasan, Berenfeld, & Mongla (1982). The results
from these expedme_ in Figs. 17and 18 sbow the effect of
abe dmsity ratio m the O dism3aaiom for (marly) matebed
jet-to-ma_ velocity, mass-flux, and momentum-
flux ratios. Tbe I_ftles tn Fig. 17 are for anodflce configu-

ratica with S/H 0 = 0.5 sad HoB) = 8 (plate A in Pig. 3) for
thr_ different flow conditions. For each of these, prof'des

are shown at downstream distances of x/I-lo-0.5, l, and 2
from left to tight. _ Im3ffles in Pig. 17(•) are for hot
jets and an ambient temperature mainstream, whereas
those in parts b and c are for ambient jets and • heated
mainstream.

In Figs. 17(a) and 0>) the momentum-flux ratios are nearly
equal and the profdes are quite similar alflmugh the density
ratio is 0.65 in Fig. 17(•) and 2.2 in Fig. 170>). The slightly
smaller 0 levels in 17(a) result from the smaller jet-
to-mainstream mass flow ratio in the case of hot jets. In
coneast, the profiles in Fig. 17(c) show ove:-peneeation, which
appears to be the result of an almost quadrupled ratio of the

jet-to-mainstream momentum-flux. Note, however, that the
jet-to-malnst_m_velocity ratios, R. are about the same for
the hot-jets and ambient mainstream case shown in 17(a), and
the ambient jets and hot mainstream _ in 17(c).

Figure 18 shows • similar compadscm for an m-ifice plate
with the same ratios of orifice spacing to duct height (S/HO)but
with larger holes. The hot jets and ambient mainstream case

and ambient jets and hot mainstream case in Figs. 18(a) and
0>), respectively have nearly equal jet-to-mainslream mass-
flux ratios, M, but note that the jets in Fig. 180>) do not
penetrate nearly as far into the mainstream apparently as a
result of their lower momentum-flux ratio. The experimental

profiles for a case with a heated mainstream flow, but with a
slightly smaller momentum-flux ratio than that for the hot jets
case in Fig. 18(•), is shownin Fig. lO(a)here and in Fig. 50>)
in paper AIAA-90-1201 (see Holdeman, Srinivasan, and
Berenfeld, 1984).

Variable temperature matnsueam.--The influence of a
nonisothermal mainstream flow on the profdes for intermedi-

ate momentum-flux ratios with S/Ho = 0.5, Ho/D = 4 is shown
in Fig. 19. The isothermal mainstream case is shown inthe

top row. In the center row in the figure, the upstream profile
(left frame) is coldest near the injection wall, whereas in the
bottom row, the upstream profde Oeft frame) is coldest near
the opposite wall. In this figure, the hottest temperatare in the

mainstream for each case was used as Tm in the definition
of 0.
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Experimental,empirical,andnumericalresultsforthe top-
cold case are shown in Fig. 20. The empirical calculations are
from a supeqxe;ition of the upstream prot'de and the corre-
sponding jets-in-an-isothermal mainsCeam distribution
OIoideman, Srinivasan, & Berenfeld, 1984). Although this
gives a good fL,'St-orderapproximation, it should be noted that

•with • variable temperature mainstream there can be cross-
mmun thermal transport because of the flow of nudnseeam
fluid arcumi the jets (and heace to different y locations), and
this is not 4_x.ounted for in superimposing the distributkms.
This becomes apparent if the local mainstream temperature,

T.(y), is used in the definition of 0 in Eq. (1).

In the variable temperature mainstream case the numerical
model results agree well with the experimental data, espe-
cially on the jet centerplane, but the Iransver_ mixing is
under-predicted, as in the corresponding isothermal main-
stream case shown in Fig. 90>).

Double Rows of Holes

Figure 21 shows three-dimensional oblique and isotherm
contour plots at x/I-I0 - 0.5 for a single row Of round holes
and several equal-area double-row circular bole configura-
tions at intermediate momentum-flux ratios. The single row
(configuration C in Fig. 3) is shown in Fig. 21(a); flow down-
stream from two rows of orifices with centerlines atignecl

(configuration M) is shown in Fig. 210>); two rows of jets
with a different hole diameter and spacing in each row (con-
figuration N) are shown in 21(c); and a staggered double-row
(configuration O) is shown in Fig. 21(d). For the double row
cmfigurations, x/H0 = 0 was midway between'the rows.

Figure 22 shows both experimental and calculated tem-

perature distributions for a double row of in-line holes (Sx/
H0 = 0.5). It was observed from the experimental profiles in
Holdeman, Srinivasan, Coleman, Meyers, & White (1987)
that the two configurations have very similar temperature
dis_butions, and this is seen in thecalculated profiles as well.
In this case the empirical model calculations are derived by
superimposing the distributions from the two rows.

Both experimental and calculated temperature distributions

are shown in Fig. 23 for a double-row configuration with Sx/
H0 = 0.25 where the trailing row has twice as many orifices as
the lead row. Note that the orifice area is the same for both

rows. "l'nesimilarity in the profiles sbows the dominance of
the lead row in establishing the jet penetration and fLrst.order
profile shape (Holdeman, Srinivasan, Coleman, Meyers, &
White, 1987). The same conclusion is supported by the
empirical and numerical calculations. As with the double row
of in-line holes, the empirical calculations for this case were
obtained by superimposing separate calculations for the two
rows.

The influence of the leading row on the temperature distri-
butions is evident in Fig. 21(o")also, where distributions from

a double row of staggered jets (Sx/H0 = 0.5) is shown for
comparisonwith the other co_guradons. The jets from the
leading row penetrate fardgr acroa the duct than do those
born the single row, as would be expected due to their larger
qa_g, buttbe pew_ratinaof thejm fromthemuli_ row is
mppmmd, ixob_y by thevomx field fromtbe leading row.
l_rther downsmmn this disu-tbuflm wu _ni_r m that fmm

a single row at ono-half the spacing of tbe lead row. This flow
was modeled empirically by superimposing separate calcula-
tions of each tow, but note that this appmac.h significantly
ovcffiestimates the jet peaetration for very retail axial dis-
lances, Sx/Ho, between the rows (see Ho_ & Sriniv_n,
1986b).

Oooosin_ Rows of Jets

Tae next three sections show results for _ injeetioa
from _rowsofjets, witlz (1) the jet centettines on top
and bottom directly opposite each other; and (2) the jet
centerlines on top and bottom staggered in the z (_er-
ential) direction. The experimen_ results are shown and
compared with the single-side results in Figs. 24 and 26. In
these figures, a duct cross-section is shown to scale to the left
of the data.

Opposed rows of in-line jets.--Figure 24 shows a compari-
son between single-side and opposed jet injection cases for
intermediate momentum-flux ratios. For these momentmn-

flux ratios, an appropriate orifice spacing to duct height ratio
for optimum single-side mixing is approximately 0.5 (see
Eq. (3)), as confirmed by the profiles in Fig. 8.

Foropposed jet injection, with equal momentum-flux ratios
on both sides, the effective mixing height is half the duct
height, based on the result in Kamotani & Greber (1974) that
the effect of an opposite wall is similar to that of the plane of
symmetry in an opposed jet configuration (c.f. also Wittig,
Elbshar, & Noll, 1984).

"Innsthe apwowiate orifice spacing to duct height ratio for
opposed jet injection at these intermediatemomentum-flux
ratios would be about SMo = 0.25. Dimensionless tempera-
ture dis_butions downstream of jets with this spacing are
shown in the bottom row of Fig. 24; and the two streams do
indeed mix very rapidly. Note that since the orifices in
Figs. 24(a) and 0>) are the same size, the jet to mainstream
flow ratio is four times greater in the opposed jet case than in
the single-side case. If it is desired to maintain an equal flow

rate, the orifice diameter must be halved, since there is injec-
tion from both sides, and the opposed jet cases require twice

as many boles in the row comparedto the optimum single-
side case.



Experimentalandcalculatedprofilesforopposedrowsof
jetsofidenticalorificespacinganddiameter,withtheorifice
centerlinesin-line are shown in Fig. 25. The empirical model

predicts the opposed-jet case very well, as the experimental
profiles on both sides of the plane of symmetry support the
Gausslan profile assumption. The numerical model results
show the steep uamvex_ and lateral gradients indicative of
too little mixing, as seen in almost all of the previous calcula-
tions also, but the jet penetration is in good agreement with
the data.

rows of staggered iets.--Figure 26 shows com-

lXUiscms between single-side and staggered jet injection for
intermediate momentum-flux ratios. Since for opposed in-line

injection, it was found that the effective mixing height was
half of the duct height, it was hypothesized that for staggered
jets the effective orifice spacing would he half the actual
spacing.

This hypothesis is verified by the rapid mixing of the two
streams in the bottom row of profiles in Fig. 26. In this fig-
me, the orifice spacing for the jets on each side is twice
the optimum value for one-side injection at the given
momentum-flux ratio. 'I'natis, a configuration that mixes
well with one-side injection mixes even faster when every
other orifice is moved to the opposite wall (see the duct
schematic to the left of the data in Fig. 26).

Empirical and numerical model calculations for an opposed
row of staggered jets are compared with the data in Fig. 27.
The empirical model does not handle this complex case well,
as the fluid dynamic interactions here are not amenable to a
direct extension of the Gaussian profile and superposition

type of modeling appropriate for most of the single-side and
opposed-jetcasesofinterest.The numericalmodelcalcuh-
tionsarenotinappreciablybetteragreementwiththedata

thantheempiricalmodelresultshowever,asthemixingis

under-predictedhereasinthepreviouscases.More recent
calculationsforanopposedrow ofstaggeredjetsaregivenby

Smith (1990).

A summary of the spacing and momentum-flux ratio rela-
tionships which give optimum mixing for opposed in-line and
staggered jets is given in Table 4.

Opposed rows of jets from slanted slots.--Numerical model
calculations for 2.8:1 aspect ratio slots slanted at 45° to the
direction of the mainstIeam flow are shown in Fig. 28 for
opposed row/in-line jet configurations in a straight duct.

In opposed-jet/slanted-slot configurations, the slots on
opposite sides of the duct may be slanted in either the same or
opposite directions. If aligned, the result is similar to single-
side injection toward an opposite wall (as was observed pre-
viously for circular holes). Centerplane and cross-su'eam
contour plots for this case are shown in Figs. 28(a), (d), and

(e), and may be compared to the c.cneSlxmding plots for
circuLxr holes in Figs. 28(c), Ca), and (i). Tae aligned slot
configuration imggtrtsa tnmslation to the flow consistent with
the experimental results (Srin/vasan, Meyers, Coleman, &
White, 1985). It was also relxmed therein that for the
momentum-flux ratios tested, this configuration results in

augmentation of cm of the vorecies of the eznml vortex Imlr,
and_on _ oezr, ,rid _je_ mix tess rn,i_ than
in the circular bole ctmfigumtiou. "I'nisis also evident in the
_cuh_k_ns shown in Figs. 2S(a), (d), sad (e).

If theslots ou opposite sides of the ductare crossed,thejet
flow shifminopposi_ directiom inthe two halves of _e duct,
with opposite transverse velocities imparted ou the top and
bottomcremingthe potmrbdfor large scale vortex intentctioa
andhighshearbetwem the ludves. However, thecentetplme
andcross-sueamcoutoursforan opposedrow of crossedslots
shown in Figs.28Ca), (0, and (g), at what is an optimum
spacing for round holes, do not suggest any improvement ha
themixing over the corresponding circular hole case. "l'nus,it
was concludedby Holdeman, Reynolds, and White (1987)
that theae does not seem to be any advantage to this coufigu-

radon, at least at the optimum ratio between orifice spacing
and momentum-flux ratio for round holes.

FdTectsof Curvature and Convergence

Differences between ID and OD iniection into a curved

duct.--Fignres 29 and 30 show centerplane and cross-slream
temperature distributions calculated with the numerical and
empirical models respectively for the flowfield downstream
of a row of jets injected from the inner CID)and outer (OD)
walls into a uniform mainstream flow in a nonconverging

duct. Orifice configuration C in Fig. 3 (S/H0 = 0.5; H0/D - 4)
with Cd = 0.64 was used for these calculations with thej_-to-
mains_eam momentum-flux ratio, J, equal to 26.4. This is an

appropriate combination of orifice spacing and momentum-
flux ratio for optimum mixing in a straight duct.Forcompari-
son withtheturning duct cases, contoq_ calculated for a

straight duct with the same jet flow and orifice geometry are
alsoshown inparts0_),(c),(O,and (g)ofthesefigures.The
cross-stream plots for the straight duct case are shown at
downs_eam distances equal to the distance along the injec-
tion wall at 30° into the turn for ID and OD injection,

respectively.

Comparison of the centerplane view of injection from the
ID wall in a curved duct with that in a straight channel, parts a
and b, shows that thepenetrationis similar. Examinationof
the crossstTeamplotsin partse and f, however,shows thatfor
ID injection into the curvedduct the familiar kidney shapeis
notevident;i.e., for ID injectionthe minimum temperature at
any radius is on the centerplane(z/S - 0), whereasfor OD
injection and stralght-duct flows the minimum temperature is
often off the centerplane.



Parts c and d, and g and h show a comparison of OD

injection upstream of a 180 turn with injection into a straight
duct (parts c and g are from the same straight duct calculation
shown in parts b and f, with the plots inverted to facilitate
comparison with the OD injection case). For OD injection,

the penetration and mixing are similar to that in a suaight
duct.

Pare e and h in Figs. 29 and 30 show that the jet stntcuae
and mixing are signifr, antly different for the iD and OD jets.
Note also that the jet trajectories drift sfighfly toward the ID
wall of the turncompared to where they would be in a straight
duct. "ntis latter result was observed in the experimmt_
results in Lipshitz & Oreber (1984).

Opposed rows with jet centerlines staraered.--It was
repcmed in Holdeman, Srinivasan, & Berenfeld (1984) and
Holdeman & Srinivasan (1986a) that enhanced mixing was

obtained when alternate jets for optimum one-side injection
were moved to the opposite wall, creating opposed rows of
jets with centerlines staggered. Forexample, ff configuration C
is selected to optimize the mixing for one side injection, then
configurations G and H would be appropriate choices for
opposite sides of the duct in an opposed row/staggered jet
configuration. Jet centerline and cross-stream contour plots
for the analogous opposed row configuration in a turning duct
is shown in Figs. 31 and 32. Note that parts b and c show
planes through the OD and ID jets, respectively. Correspond-
ing plots for separate rows of OD and ID jets are shown in
parts a and e, and d and g, respectively.

The contours for opposed rows of staggered jets in a turn-
ing duct (Figs. 31 and 32) show that both the OD and ID jets
in this configuration penetrate farther than the comparable
single-side case. This was also seen in the straight duct

experim_ts. A difference between the cross-stream shape of
the distributions downstream from OD and ID jets is apparent
also, and is consistent with the corresponding contours of the
separate OD and ID jet configurations.

rows with iet centerlines in-line.--An alternative

to staggered cemerlines in the opposed row configuration is to
have the centerlines directly opposed. To maintain the
apwowlate ratio of orifice spacing to mixing height for this
case, the orifice spacing must be halved since the effective
mixing height is half the height of the duct (Holdeman,
Srinivasan, & Berenfeld, 1984; Wittig, Elbahar, & Noll, 1984).
Since there will be four times as many injection locations for
opposed/in-line injection, the orifice diameters must be half
of that for the single-side case if the same mass flow split is

desired. This is shown in configuration L (S/H 0 = 0.25,
H0/D = 8) in Fig. 3. Centerplane and cross-stream contour
plots for this configuration with J = 26.4 are shown in parts a
and c of Figs. 33 and 34 for calculations made with the
numerical and empirical models, respectively.

A lower jet-m-maimmeam nxm_ntum-flux ratio requires a
larger orifice spacing to maintain optimum mixing (andlarger
orifices will probably also be needed to give the required total
orifice area). Ceaterplane and mm-_rmm temperature con-
toms for configuration C with J = 6.6 for opposed rows of
in-line jets tre shown in lmrts b and d of Figs. 33 and 34. The
t_te_l_rityof tbe flow Imtem Is evklmt in both the ammrkal
and empirical model calcolatk_ whm the mommtmn-flux
mio and tbe Kletre a' the orifice gtcing fe invenely im_
pcmional. Comparelw_banddfor J=6.6and S/H0=0.5
to partsa and c for J - 26.4 and S/Ho- = 0.25, and note that
C- 1.28 for both of Omse. This _mil_ was also seon in the

_ttl ,_t tmlyecal results for optmeed rows of in-line
jets injected into a straight duct.

F.ffectsofradinsofctwvan_intbe x-r t)lane.--Tbe emect

of varying the radius of ctwvature, Rei, is shown in Figs. 35
and 36 for calculations made with the numerical and empirical
models, _vely. Parts b and e are ceatetplane and erms-
stream contours for an ID radius of curvature equal to one-
fourth the height of the inlet duct, i.e., _ ,, 0.25. The
jet-to-mainsUeam _tnm-flux ratio is 6.6 with an opposed
row/m-line jets co_gumtion with S/H0 = 0.5 and H0/D - 4
(configuration C). Both the conterplane and cross-me, am

distributions for these and the larger radius of curvature (Rc_
H0 = 0.5) shown in Figs. 33 and 34 are similar. For compsri-
son, omterplane and cross-stream contour plots for the com-
parable straight duct case are shown in parts a, c, and d. Asin
previous figures the straight and turning duct flows are simi-
lar, but the differeuce betwem the mixing of the ID and OD
jets is evident in the turning duct cases.

Mixinf of_ts in an unnnlar duct (effectsof
_).--Calculated centerplane and cross-stream con-
tours for a straight annulus and a comparable rectangular duct
are shown in Figs. 37 and 38 for numerical and empirical
models, respectively. Cross-section contours, for both the
annular and rectangular ducts, are shown at a downstream

distance of _ = 0.75 for the nmnerical model calculation.

For the annular duct, the inside radius (I'D) of the annulus

was equal to the duct height, i.e., Rt/I-Io = 1. The orifice geo-
metry was again an opposed row/in-line jets (configurationC)
with J = 6.6. Similar penetration and mixing, as seen in both -
the centerplane and cro, s-stream contours, was achieved by -
specifying the jet spacing for the annular duct to be equal to
that in the rectangular duct at the radius which divides the

annulus into equal areas (r- Rct= H0/._).

Convergence effects.--The effect of a 1:3 (exit:inle0 area
ratio convergence in turning ducts is shown in the centetplane

and cross-stream contours in Figs.39 and 40 for the opposed
row/in-line jets configuration. For a turning duct, this conver-

gence may be obtained through reduction in the duct height or
by circumferential convergence if the exit annulus is at a
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smallerradius(closertotheenginecenterline)thanthe inlet.
Centerplane and cross-stream temperature contours for these
turning and converging cases are shown in parts b and f, and
c and g, respectively. Temperature distributions, especially
the cross-stream contours, are similar for both radial and
circmnferential convergence. Centerplane and cross-slream

plots fara straight converging duct are shown in parts a,d,
ande.

_¢ts inkcted into a can.--Tnis is the limiting case for OD
injection with curvature in the r-z plane where the radius of
the _ _ulm is equal to zero. Calculated temperaun'_
¢,ontm_ for jet injection into a section of a e,an are shown in
Figs. 41 and 42. Cross-stream contours are shown at a
downstream distances of x/H0 = 0.75 for the numerical
model, and at downstream distances of x/H0 - 0.25 and 0.75
for the empirical model. The corresponding centerplane and

cross-stream contours for the rectangular duct case are shown
in Figs. 29 and 30.

The jet-to-mainslream momentum-flux ratio was 26.4. The
jet spacing for this case was specified, at the radius which
divides the can into equal areas, as that appropriate for injec:

fion of a row of jets into a rectangular duct. That is, the
relationship of the spacing between jet eenterlines to the
number of holes around the circumference of the can would

be

S = 2nR_/n (4)
where

R_ = H0/(X/2 ) (5)

Substituting these into the spacing and momentum-flux
relationship for a rectangular duct (Eq. (3)) gives the appro-

priate number of holes as
n = 7t'f_'IC (6)

It follows that each sector would be 360/n °.

Applicability and Limitations

These results suggest that for a given momentum-flux ratio
and downstream distance, ccanbustor design procedure should

fh-st identify the circumferential edfice spacing (S/He) required
to obtain the desired penetration and profile shape. The
orifice size would then be chosen to provide the required jet-
to-mainstream mass flow ratio. Because the penetration var-

ies slightly with orifice size and shape, and other parameters
such as the combustor pressure loss and the ratio of the orifice
spacing to diameter (S/D) must be monitored to insure that the
suggested configuration is physically realistic, some adjust-
ments, including noncircular orifices or multiple rows, may
be needed to arrive at the final design.

Empirical

goodpredictive capability within the parameter range of the

generatingexperiments, provided that the experimental results
are consistent with the assmnptions made in the empirical
model. These models must, however, be used with caution, of

not at all, ou_de this range.

Tbe nmge of the expedmmts on which tbe mpklcal model
nsedinthisstudywasbt#edareglveainTable1. Thedensity
ratio, naanentum-flux ratio, mifice spsclng, and orifice
were the primary independent variables. "rite orifice-to-
mainstream area ratio, the jet-to-total mass flow sprit, and the
constant of proptmionality between the odfie.e spacing and
momentmn-flex ratio,whicharederivedfromthewimm7

variables are also given in the table. Not allcombinations of
the independeat variables in the table were tested; only
combinations which sre widfin the nmge given for the derived
variables represent cotulitions that are within the range of the
experimentsandcalculations.

Examining the results in Figs. 6 to 42 in the context of
Eq. (3) suggests that generally the empirical model would be
expected to provide good temperature field predictions for
single-side injection wbea 1 < C < 5. Similarly, good predic-
tions would be expected for opposed in-line jets provided that
0.5 < C < 2.5. This model does not work well for impinging

flows as the experimental temperature distributions are not
consistent with the assumption of Gaussian profde similarity
in the empirical model. The experimental profiles for condi-
tions giving optimum mixing in opposed staggered-jet con-
figurafiom are also somewhat at variance with the model
assumptions, and the satisfactory agreement with the data in
these cases must be considered fortuitous.

Use of the empirical model in regions close to the injection
location (x/D < I) is not recommended. Also, a major weak-
ness of the empirical model used here (Holdeman, Srinivasan,
and White, 1988) and previous versions is that the form of the
empirical correlations precludes their use for semi-confined

flows (large Ho/D or S/D), single jet flows, or flows in
which it is known a priori that the primary asmanlXiom in the
model will be invalid.

Numerical

It is significant to note that the numerical model is not
subject to the inherent limitation of the empirical model
regarding profile shape and confinement. Thus, three-
dimensional codes can provide calculations for complex flows
for which the assumptions in the empirical model are known
to be invalid, or that are outside the range of available

experiments. Furthermore numerical models provide calcula-
tions for all flowfield parameters of interest, not just those

that happen to have been empirically correlated.

Examination of the empirical model results shown here
suggest that correlation of experimental data can provide a

The numerical calculations correcdy show the trends which
result from variation of the independent flow and geometric
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variables,althoughtheresultsconsistentlyexhibittoolittle
mixing,consistent with previous jet-in-crossflow calculations

a k-_ model reported in Claus (1983). The numerical
model calculations for the slanted slots and staggered jet cases
are eucouraging in that the experimental data for these cases
show profiles that are not consistent with the primary assump-
tiros in the empirical model.

"ritenumerical calculations performed were shown to be

grid sensitive, and false diffusion was known to be present.
Uncertainties also exist in these calculations regarding the

validity of turbulence model assumptions, and due to
mlaeamred(andhenceusumed) boundarycm tions. The
results shown here are not intended to represent the agreement
possible from numerical models at this time, as better tern-

field _ could undoubtedly have been achieved
by adjusting model constants and/or inlet boundary condi-
tions. Since this was not necessary to satisfy the objective of
evaluatingthepotential of these codes vis-a-viscombustor

dilution zone flowfiekis, and because the mean temperaua'e
was the only parameter compared, no adjus|ments were made.

Thus, consistent with previous assessments, three-
dimensional calculations of complex flows (circa 1985), such
as those shown herein, should be considered as only qualita-

.tively accurate, but are useful in guiding design changesor in
perturbation analyses. Although these codes were deemed
sufficiently promising to justify further development and
assessment, they possessed neither sufficient accuracy nor
efficiency for practical use as a general engineering tool.
Recent codes with improved numerics, accuracy, and turbu-
lence models offer more quantitative predictions, but there

would appear to be a continuing need for the empirical model
as • near-term design tool, provided that the conditions of
imerest are within the range of the experience on which the
model is based.

Summary of Results

Tue principal conclusions from the experimental results
_tmarized herein are:

1. Variations in momentum-fiux ratio and orifice size and

spacing have a significant effect on the flow distribution.

2. Similar distributions can be obtained, independent of

orifice diameter, when the orifice spacing is inversely propor-
tional to the square-root of the momentum-flux ratio.

3. Flow area convergence, especially injection wall con-
vergence, significantly improves the mixing.

4. For orifices that are symmetric with respect to the main
flow direction, the effects of shape are significant only in the

region near the injection plane. Beyond x/H0 = 1 (x/D > 4 for
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the orifices tested) temperature distributions were similar to
those observed fromequally apsced equal-areacircular orifice_

5. The peueCatim and mixing of 45 ° slanted slots me less
than for streamlined, bluff or equlvalmt-area circular boles.
Also, temperature distributions for slanted slots are rotated
ted tmndb'withtm ecttotheinjeceoammphme.

6. Jet penetration for two-dimemioml Idol is limilar to
the c.enteq_htaevalue for ckgdy-_paced (S/D - 2) holes, but
the temperature difference ratios show that the mixing is
significantly slowe_ for two-dimenstmal sims.

7. A fast-order approximation to the mixing _jets with a
variable tmuperauue maimuemu can be addeved by m-
posingthejets-ln-m-lsod_ermal-malammmand ul_tream

profiles.

8. With the same mtfice siNtcing in (at least) the lead row,
double rows of jets have temperature dislribufions similar to

those from a single row of equally-spaced, equivalent-area
circular orifr.es.

9. For opposed rows of jets, with the orifice centerliues
in-line, the optimum ratio of orifice spacing to duct height is
oue-half of the optimum value for single-side injection at the
same momentum-flux ratio. Similar mixing was observed to
that from comparable singE-side cases, except that better
mixing was observed at the same downstream distance for
opposed jets because the effective mixing height is less than
the channel height for this case.

10. For opposed rows of jets, with the orifice centerlines

staggezed, the optimum ratio of orifice spacing to duct height
is double the optimum value for single-side injection at the
same momentum-flux ratio. This configuration exhibited

even better mixing than optimum single side injection. That
is, a configuration that mixes well with one-side injection
performs even better when every other orifice is moved to the
opposite walL

Temperature field measmements from the experiments cited
above are compared with distributions calculated with an

empirical model based on assumed vertical profile similarity
and superposition, and with calculations made with • three-

dimensional elliptic code using a standard k-_ turbulence
model. The results can be summarized as follows:

Empirical model calculations provide very good results for
modeled parameters within the range of experiments when-
ever the primary assumptions in the model are satisfied.

Numerical model calculations can predict all flowfield
quantities, flows outside the range of experiments, or flows
where empirical assumptions are invalid. Three-dimensional



codecalculationsmadein thisstudycorrectlyapproximate
thetrendswhichresultfromvariationoftheindependent flow

and geometric variables, but they consistently exhibit too
little mixing. Numerical calculations should yield more quan-
titative predictions with improvements in numerics, accuracy,
and turbulence models.

An existing empirical model for the temperature field
downstre_a of single and multiple rows of jets injected into a
confined crossflow has been extended to model the effects of

curvature and convergence on the mixing. This extension is
rinsedon the results of a numerical study of these effects using
• three-dimeusional turbulent flow computer code. Temwxa-
tare distributions calculated with both the numerical and

empirical models show the effects of flow area convergence,
radius of curvature, and inner and outer wall injection for
i_Oe and opposedrows of jets.

The following conclusions can be made from the computa-
tional study:

1. Jet penetration and mixing in a turning and converging
duct are similar to the effects seen in a converging straight

channel, namely flint the optimum orifice spacing and
momentum-flux relationships are unchanged, and the mixing
is not inhibited by the convergence. This appears to be
independent of whether the convergence in the turning duct is
radial or circumferential.

2. Curvature in the mainflow direction causes a drift of the

jet trajectories toward the inner wall. The different structure
for the ID and OD jets, observed in the calculalJons with the
numerical model, are shown in calculations with the empirical
model also.

3. Jet trajectories in an annulus (or can) are similar to those
in a rectangular duct for the same jet-to-mainstream

momentum-flux and orifice-spacing-to-duct-height (radius)
ratios when the spacingis specifiedat the radius dividing the
annulus (or can) into equal areas.

Appendix--Correlation Equations

Jet Thermal CenterlineTrajectory

Ye/I'I,xlffi(alX0.3575)(j)0"25(S/D)0"I4(Heq/D)'°'45(Cd)0"155

x (x/Heq)°'7(exl_-b))

where

and

al ffi min[(1 + S/Heq),2]

b ffi(0.091Xx/I'I_)2[(H_ IS)" (J0_)/_5]

Centervlane Maximum Tmmeratme Diffevmce Itsflo

0 c ffi 0EB + (1" 0g_R)_(alXJ)'0"35(Cd)°'5(H./D) "1

'wh_'e

and

OEB = Wj/W T

CCntCrplan.¢ Minimum Temperature Difference Ratios

(o_)/(oo)--,-o_-e)
where

,.,e ,._(H_,_,)-_(C)o.,,_.C+ = (a3X0.038XJ) (S/D) d

×(_)_
and

a3 _l if (Yc/Heq + W_/I-I_)_<I

: i, +

(e;m_0o)=_-oxp(<-)

where

- _ -,-,(i_,_)°-9(c)"_()o._C = (QXa4XJ) (S/D) eq d x/Heq

and
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a4 = 157 ff Rci/Heq = infinity (straight duct)

= 3_g3 if Rc//I'le_ < infinity (curved duct)

.o-l ÷
< infmity

Rci/Heq = inl'mity

Cenlerplane Half-Width_

(W_H_q _ts -_z_" ,0._. .0125= (asXJ) (S/D) (_Io/H_q) (Cd)"

×(x/H.)

where

a5 = 0.1623 if Rci/I-Ieq= infinity(swaightduct)

= 0.3 if Rci/Heq < infmity(curvedduct)

,_ s0.055t _ _0J2

where

a6 = 0.2

= 0.5

if Rci/Heq - infinity (straight duct)

if Rci/Heq < infinity (curved duct)

Off-centerplane Thermal Trajectory

Yc:/Yc = 1-(4Xz/S)2(exp(-g))

where

g ffi (O..?,27XJ)0"67($/D)'I(H_I/rD) 0"54(cd)0"23(xffrleq) 0"54

Off-centcrolane Maximum Tetnvenma, e Difference Ratio

(e_)/e_= l-(4X_/S?(e_-d))

wh_re - -

d = (0.452XJ)053(S/D)'L53(Heq/D) 0JE(Cd)035(x/Heq) 0_3

Off-centerplaneMinimum Temperature Difference Rados

(o_,_,,,_)l(e_)-(e_)l(e,)

Off-eentemiane Half-widths

(W_)/Heq = (Wk)/He q

The six scalingparameters, yc/I-I_, 0©, +era,e_.,
W_/H_, and W_/Hoq, are used in'_l. (2) to define the

vertical profile at any x,z location in the flow. For all except

thecaseofopposed rows ofjetswithcent_dines in-line, Hcq
in the correlation equations is equal to H0, the height of the

duct at the injection location.

Nonisothermal Mainstream

Double (axially staged) Rows of Jets
Oi_3sed Rows of Jets with Ccnte_lines Staggered

It was shown by Holdeman and Srinivasan (1986a) that

these flows can be satisfactorilym_ied by superimposing

independent calculations of the separate elements. This is

accomplished as follows:

o - [0,+ (o,Xo )]
Note that 0 = 01 at any location where 02 = 0 (and

0 = 02 if 01 = 0); and that 0 -< 1 (provided that 01 and 0 2
are each _< 1). Also, for the completely mixed case 0EB is

equal to the ratio of the jet flow to the total flow as required.

Otmosed Rows of Jets with Centetlines In-line

It was observed by Kamotani and Oreber (1974) that the

flowfield downstream of opposed jets was similar to that

downstream of a single jet injected toward an opposite wall at

half the distance between the jets. This is also conf'mmed by

the experimental results in Srinivasan, Coleman, & White

(1984). Thus for the symmetric case, Heq = (H0)/2.
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In general, these flows can be modeled by calculating an
effective duct height as proposed by Wittig, Elhahar, & NoB
(1984), namely;

[Heq ]top = (Ho_[(Aj/AmXJO'5)_opl/I[(Aj/AmXJO'5)]top

and

[Heq]bouom = Ho - [Heq]mp

Effects Due to Curvature

The flow in a curved duct develops a free vortex, wherein
U = (const)/r, with higher velocities near the inner wall than
near the outer wall. The local momentum-flux ratio is thus

Jl,_ = (4XJXr/(ri + ro))2

where J is the momentum-fluxratio based on the uniform

mainstreamvelocity.

The effective momentum-flux ratio for OD jets is defined

to be the integrated average of the values of Jlocal over the
outer half of the duct, and similarly the effective momentum-
flux ratio for ID jets is def'med to be the integrated average of

the Jlocal values over the inner half of the duct. These values
are:

JOD = (JX1 + (2XCoD) + (4XCoD)2)/3

where

and

JID : (J)(l + (2XCID) + (4)(C1D)2)/3

COD = (I+ H0/Rci)/(2+ H0/Rci)

CID = 1/(2 + Ho/RcI)

Flow Area Convergence

This case is modeled by assuming that the accelerating
mainstream will act to decrease the effective momentum-flux

ratio as the flow proceeds downstream, thus:

J(x)= (J)[I-I(x)/Ho]2

Note that the trajectory and the jet half-widths are calcu-
lated in terms of the duct height at the injection location, so

must be scaled by the inverse of the convergence rate, H0/H(x),
to give profiles in terms of the local duct height.

Orifice Asvect Ratio

It was observed by Srinivasan, Meyers, Coleman, & White
(1985) that bluff sloes resulted in slightly less jet penelratlon
and more two-dimensional profiles than circular holes, mad
that streamlined slots resulted in slightlygreaterjet penetra-

ti_ _d more three-dime_lom113raffles. 1his effect is mod-

eled by using the ratio of the odtke slmci_ to the mifice
width, S/W, inlieuof S/D intheomelatimeqmtions.
recumlpam,adfi(w_with_ ends;

S/W = (S/DXI+ (4/gXAR -I)]0-5 if AR > 1

and

S/W = (S/D)[1 * (4/gXI/AR- I)](XS/AR if AR <1

where

AR - W/L

Slanted Slots

Two effects were noted in the experimental results for
slanted slots, namely that the ceaterplanes shifted iatetaliy
with increasingdownstreamdistance,and the axes of the

kidney-shapedtemperaturecontoumwereinclinedwithmSlX_

to the injection direction. "Fneformer is modeled as a function
of momentum-flux ratio and downslze,am distance as:

where

=sl4(g/2X,)]

a = mi41, (x/HeqXJ/2_4)°25 ]

The rotation effect observedin the experimentaldata is not
modeled.
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TABLE I.--RANGES OF HOW AND GEOMETRIC
VARIABLES ON WHICH MODEL IS BASED

_ent variables:

Vou diam_ x/_lo
Demity redo,DR
Momentum-flux ratio,J

Ortfioediamaa, Ho/D
Oelf_etmmvme (d..e_mfmm__ tWD)

Odfke mpea ratio

Amt me, (exitliatet)

Radlmdmn_mta x-r l_lme,ltd_

Radiosdcurvaturela r-z plane, Rt/14o

Derivedvariables:

01o2

0.5 to Z2
$10 105
41o 16

21o6
0.25 to 0J

0.26 to 2.8
0.33 to 1

0.25 1o-
01000

0 to 0.5

Odfze Sl_¢tn _ S_ 0 0.125 to 1

y A_ 0.07.5 to 0.i0.075 10036

c - (sn_.l_J_ o.s 10IO

TABLE 2.--FLOW AND GEOMETRIC CONDITIONS FOR STRAIGHt DUCT

F3gure Case" Dmcrlpden Plateb

2, 12(8), 21(s) m-22
6(a), 7(t) 1-s
60,), 7CO),11Co) 1-4
8(a) !-3
8('o),17CO),240 1-7
8(c),16(b) i-6
9(,,) n-50
90,).1o(,).t9(a),26(,,)1-2
10CO)
10(c)
li(a)

12(a)

120,)

12(c), 13CO), J4

15(8)
15(b),:8CO)
16(a)
17(a)
17(c)

'18(.)
tgco).20

19(c)
21CO),22

21(¢), 23

21(d)

24CO),25

26CO),2_

11-26 symmetric con _agence

H-34 injection wall omwcrgmce
!I-32 square holes
I]]-2 streamlined slots
I;I-3 bluff slots
r/I-19 slanted slots

11-450 wide _ot
i-1

!I-31 (c) narrow sl<x
1-12 h<x jets

1-8 mbimt jets
1-9 hot jets
!-13 top mid

1-17 top hot

I11-6 double]+m-line

IH-I 1 double]dissimilar

HI-9 double]staggfred

II-2 oppose_m-line

H-28 opposed/staggered

aS_Ivasan& White (1986)

bSee Fig. 3

+c - (S/HO)(_

C
L
H
H
A
L
B
C
C
C

I
D
E
F 2
K --
C 2
J --

A 4
A 4

C 12
c 12
12 :2

M 2.8
2.8

N 2.8
2

O 4

4

L&L 2
G&H 4

+4/DSt o c, mt j w/.. "/'+r C+

2 4 0.5 a++7_2 0.57 o.m
2 8 -25 .049 .6 2.1 22.4 .20 .17 l.lg
4 4 1 .049 .67 2.2 23.5 .24 .19 4.85
4 4 1 .049 73 2.1 5.3 .12 .il 2.3_
4 8 0.5 .025 .61 2.2 38.4 .12 .11 2.6_
2 8 .25 .049 .61 2.3 92.7 .44 .30 2.41
2.8 5.7 .5 .049 .71 2.2 25.4 .26 .20 2.52
2 4 .5 .098 .61 2.1 18.6 .37 .27 2.1_
2 4 .5 .098 .60i2.0 26.41 .43 .30 L56
2 4 .5 .098 .61 2.2 26.4 .46 .31 !ZY7
4 4 1 .049 .67 2.1 24.2 .23 .19 4.92
2 4 0.5 .098 .71 2.2 76.5 .53 .35 2.57
2 4 0.5 .098 .9 2.2 26.6 .68 .40 2.58

4 0.5 .098 .66 2.2 27.1 ,50 .33 2.60
9.9 -- .10 .75 2.2 6.7 .28 .22
4 0.5 .098 .67 2.1 5.0 .21 .18 1.12

19.8 -- .05 .72 2.1 10&4 .39 .35 --

g 0.5 .025 .65 0.65 22.7 .06 .06 2.38
8 .025 .61 2.3 96.0 .22 .18 4.90
4 .098 .61 0.62 22.7 .22 .18 2.38
4 .098 .61 1.8 31.8 A5 .31 2.112
4 .098 .68 1.8 24.4 .45 .31 2.47

5.7 i .049 .65 2.2 26.3 .24 .33 2.56
5.7 _' .049 .66 2.2 26.9 .25 -- 2.59

5.7 0.5 .049 .69 12.2 215.8 .26 .34 2.58
8 0.25 .049 .7 2.2 26.6 .26 1.29
4 1 .049 .65 2.2 26.8 .24 .33 5.18

4 1 .049 .68 2.2 245+7 .26 5.17

8 0.25 .098 .65 2.1 25.0 .46 .32 1.25
4 1 .098 .6512.1 26.4 .48 .32 5.14
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TABLE 3.--FLOW AND GEOMETRY CONDITIONS FOR NUMI_ICAL S'IN_IES

Figure

2S(a).(@.(e)
2S(b).(O.(g)
2S(¢).00.(i);35(,).(c).(d);360)
20(a).(e);30(-).(0;31(d),(g);3_d)._
29(b).(c).(f);_(b).(¢).(f)
29(d).0:);30(d).(h);31(_).(d);3_:).(d)
31Co),(©).(0;32Co),(c),(0
33(a),(c); 34(a)

33Co).(d);34('o)
3.Wo),(e);_(b)
37(.),Co);_(,)
39(,).(d).(e);40(a).(d).(e)
39(b).(f);'lO0,).(O
3o(c).(g);,m(c).(g)
4t(:),Co),(¢);4_-).Co)#)

A_rm

c,._. J s/t% _ _o e,n% e,ao co,msma_

38 6.6 0.5
39 6.6

30 _6

9 26.4
12
1

18 1.0 '
37 " 0.25 8
10 6.6 0.5 4
29
21
31

33

35 ,'
41 26.4

hsf_dty Cmm_sbmted
OS,SxHt_

0.5 _ _jeu,
i

0.5 _ oo j,m,

!' _-nne

O.25

aReynolds and White (1987), Srinivasan and White (1988).

TABLE 4.'SPACING AND

MOMENTUM-FLUX RATIO
RELATIONSHIPS

Single-sideinjection;
LM_r-pmetmdon
Opdmum

OveJ-peaetratioa

Opposed rows of jets:
h-line optimum
Slaggered optimum

¢1.25

2.5
>5.0

1.25
5.0
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flow.
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Figure5. - Schematicof typicalver-
tical temperatureprofile showing
scalingparameters in empirical
model.
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- EffectofvaryJnrj orifice spacingat constant areaon temperaturedistributions (AjIA m - 0. 05).
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Figure7. - Effectof varying orifice spacing at constantareaon temperaturedistributions atX IH0 • (15 (Ajl^ m • O.05).
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Figure11. - Comparison oftemperaturedistributionsdownstreamof square and round
holes: SIH0 = 1, Ho/D -4.
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Figure12. - Comparisonof 3-D obliquetemperaturedistributionsfor equivalent-area
streamlined, bluff, and slantedslotsat intermediate momentumflux-ratios;

S/H0 , 0.5, Ho/D -4.
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Figure13. - Comparisons of isotherm contoursfor circular holes and45-degslantedslols at
intermediatemomentum flux ratios; SIH0 - 0. 5. Ho/D • 4.
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Figure14, - Temperaturedistributions for slantedslotsat an intermediatemomentumflux
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F<jure15. - Comparisonof temperaturedistributionsfor a wideZ-D slotand closely-
spacedholesat lowmomentumflux ratios.
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Ftgure29.--Numericalcalculationsof temperaturefield downstreamof jets injected from inner andouter wallsinstraightand curved ducts (J = 26.4,
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Figure 34.--Empirical model calculationsforopposed rows wilh ]elcenterlines
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Figure 37.--Numerical model calculations for the mixing of jets in an
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